
Parameter Estimation in a Coupled System of

Nonlinear Size-Structured Populations

Azmy S. Ackleh∗, H.T. Banks†, Keng Deng∗, Shuhua Hu∗

∗Department of Mathematics
University of Louisiana at Lafayette

Lafayette, Louisiana 70504-1010

†Center for Research in Scientific Computation
North Carolina State University

Raleigh, North Carolina 27695-8205.

November 22, 2004

Abstract

A least-squares technique is developed for identifying unknown parameters in a
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parameter estimation technique are established. Ample numerical simulations and
statistical evidence are provided to demonstrate the feasibility of this approach.
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1 Introduction

A typical direct problem for structured populations is to use the knowledge of underlying

mechanism at individual level such as growth, mortality and reproduction rates to deduce

the behavior at population level. This approach has been extensively studied for many kinds

of models which include structured and non-structured populations. In practice, however,

our knowledge of the vital rates may be incomplete [40]. In fact, in many animal and plant

populations the processes at the individual level are not accessible to direct observation

[47]. For example, for nonlinear structured models the dependence of reproduction and

mortality rates on the total population is sometimes completely unknown [37]. Even for linear

structured models, one may not be able to obtain the exact dependence of the vital rates

on the age or size structure [40]. In these cases, one resorts to an inverse problem approach,

namely to use knowledge about the behavior at the population level (e.g, observations of

total population numbers) to deduce the underlying mechanisms at the individual level.

In recent years many researchers have focused their attention on developing methodologies

for solving inverse problems governed by structured population models (e.g, [1]-[3], [12]-[17],

[19]-[23], [25]-[34], [40]-[49]). In what follows, we briefly review some of the recent work on

such inverse problems. For age-structured population models, several approaches have been

developed to recover unknown individual vital rates. For example, in [40, 43] a fixed point

iterative technique was developed to determine the death rate from census data on the age

distribution of the population. Therein, conditions on the data are given that lead to a

unique solution. In [26] the authors formulated the inverse problem as an operator equation

and the least squares method is then used to compute its solution. Due to the ill-posedness

of the problem, a regularization technique was considered. In addition, the authors prove

that the resulting scheme has a convergence rate of Hölder type. However, no numerical

results were reported. A least squares approach was also adopted in [19] for a nonlinear age-

structured population model to estimate unknown coefficients from a set of fully discrete

observations of the population. Although the convergence of the computed minimizers to a

minimizer of the least squares problem was established and numerical results were presented,

for many real populations it is generally difficult to obtain discrete observations with respect

to age, whereas other quantities such as total population number are easily obtained. In [25]

a model describing the evolution in time of size/age structured population was considered.

A moving finite element method was used to study the identification problem for such a

model. Convergence results for the parameter estimation technique were reported. In [30],

by writing a linear age-structured model using the cumulative formulation approach (see e.g.,

[24]), the authors studied the inverse problem of identifying the birth and death rates from
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data on the total population size and the cumulative number of births. They also provided

conditions on the data that guarantee the uniqueness of the solution to the inverse problem.

For size-structured population models, the least squares approach has been often used for

parameter identification. For example, it was used in [15, 16] to estimate the growth rate dis-

tribution in a linear size-structured population model. A similar technique was subsequently

applied to a semilinear size-structured model in [34] where the mortality rate depends on

the total population due to competition. In [2] an inverse problem governed by a phyto-

plankton aggregation model was studied. Convergence and numerical results for identifying

the coagulation kernel were provided. Later, this technique was extended to identify pa-

rameters in a size-structured population model in [1, 3] where all the individual vital rates

(growth, mortality and reproduction) depend on the total population level. Therein, these

parameters are identified from a set of observations corresponding to the total population

number. A finite difference method was then used to approximate the infinite dimensional

problem. Convergence results for the computed parameter estimates to the true parameter

were established. To our knowledge, [3] was the first paper to provide convergence results

for parameter estimates when the growth rate is a nonlinear function of the total population

(i.e., the size-structured model is represented by a quasilinear first order hyperbolic initial

boundary value problem).

In this paper we extend the discussion in [3] to the following coupled system of quasilinear

size-structured populations model:

uI
t + (gI(x, P (t; q))uI)x + mI(x, P (t; q))uI = 0, (x, t) ∈ (0, L]× (0, T ],

gI(0, P (t; q))uI(0, t; q) = CI(t) +
N∑

J=1

∫ L

0

γI,JβJ(x, P (t; q))uJ(x, t; q)dx, t ∈ (0, T ],

uI(x, 0; q) = uI,0(x), x ∈ [0, L].

(1.1)

Here q = (q1, q2, . . . , qN) with qI = (gI ,mI , βI , CI), I = 1, 2, . . . , N , the parameters to be

identified. The function uI(x, t; q), I = 1, 2, . . . , N , is the parameter-dependent size density

(number per unit size) of individuals in the Ith population having size x at time t, and

P (t; q) =
N∑

J=1

∫ L

0

uJ(x, t; q)dx (1.2)

is the total population at time t. The function gI denotes the growth rate of an individual

in the Ith population, mI denotes the mortality rate of an individual in the Ith population,

and βI is the reproduction rate of an individual in the Ith population. The function CI

represents the inflow rate of the Ith population of zero-size individuals from an external

source (e.g., in a tree population model seeds moved by wind).
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The model (1.1), which was developed by the authors in [4], is a generalization of several

size-structured population models (usually referred to as structured models with rate dis-

tributions) which have been investigated in [14, 15, 16, 34]. Motivated by the fact that, in

addition to observable characteristics such as age or size of the individuals, non-observable

genetic characteristics may often play a crucial role in the development of the individuals,

researchers in [14] presented the first such generalization of the classical Sinko-Streifer model.

This model, which is a linear version of (1.1), has vital individual rates that are independent

of the total population and distributed over an an infinite-dimensional admissible parame-

ter space with a probability measure. It was shown through numerical simulations in [14]

that there is a crucial difference between the dynamics of distributed rate size-structured

population models and the classical Sinko-Streifer models. In particular, the classical Sinko-

Streifer model cannot have dispersion of the density of the population in age or size except

under biologically unreasonable conditions on the growth rate [15]. That is why the classi-

cal Sinko-Streifer models are in conflict with field data collected by experimental biologists.

These data sets show that a population with unimodal distribution evolves into a bimodal

distribution (see [14] and [41]). In [17] the authors used least squares approach to fit these

distributed rate models to data obtained in [14]. The resulting good fit indicates that the

need for such modification is crucial if these models were to be used as prediction tools.

In addition to extending the theory in [3] to the coupled quasilinear system (1.1), a main

novelty of our current research is that we report on extensive numerical simulations. These

simulations are then used to obtain statistical results (in the form of confidence intervals)

which provide solid evidence on the feasibility of this approach. It is worth pointing out

that with the exception of [28] the above-mentioned articles do not report on any statistical

studies.

As the use of numerical methods for estimating functional parameters becomes more

widely accepted in the biological sciences, it is becoming increasingly important for inves-

tigators to support the efficacy of proposed numerical algorithms with not only numerical

simulation results but also confidence intervals on estimated parameters. This can be done

by calculating standard errors in a number of sophisticated ways (e.g., pointwise confidence

intervals or bands as in [38, 39, 48], uniform bands [32], simultaneous confidence bands [31],

etc.). Here we simply compute the pointwise standard errors using the pointwise sample

variances from a large (1000) number of inverse problem simulations. While in our efforts we

emphasize (regularized) ordinary least square estimators, the ideas and methods presented in

this paper can readily be used with maximum likelihood estimators as well as other standard

estimators found in the statistical literature.

It is also worth noting another connection between statistical methods and our efforts
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in this paper. The models we use here involve a form of “mixing” distributions found in

the literature on mixed effects, random effects or hierarchial methods (see for example,

[20, 21, 22, 35, 36, 46]). However the models we investigate entail mixing that cannot be

decoupled into individual dynamics and thus result in fully coupled dynamics (see our closing

remarks in Section 4).

By a weak solution to problem (1.1) we mean a bounded and measurable function

u(x, t; q) = (u1(x, t; q), u2(x, t; q), . . . , uN(x, t; q)) satisfying

∫ L

0

uI(x, t; q)ϕ(x, t)dx−
∫ L

0

uI(x, 0; q)ϕ(x, 0)dx

=

∫ t

0

∫ L

0

(uIϕs + gIuIϕx −mIuIϕ)dx ds

+

∫ t

0

ϕ(0, s)

(
CI(s) +

N∑
J=1

∫ L

0

γI,JβJ(x, P (s; q))uJ(x, s; q)dx

)
ds

(1.3)

for t ∈ [0, T ], I = 1, 2, . . . , N , and every test function ϕ ∈ C1([0, L]× [0, T ]).

We first impose a condition on the initial data: for any I = 1, 2, . . . , N

(H1) uI,0 ∈ BV [0, L] and uI,0(x) ≥ 0.

Then let B =
N∏

I=1

BI with BI = C1([0, L]; Cb[0,∞)) × Cb(Ω) × Cb(Ω) × C[0, T ], where

Ω = [0, L]× [0,∞) and Cb(Ω) denotes the space of uniformly bounded continuous functions

on Ω. We assume that our admissible parameter space QI is a compact subset of BI satisfying

(H2)-(H5) below.

(H2) βI(x, P ) is a nonnegative Lipschitz continuous function in x and P with a Lipschitz

constant L1. Furthermore, βI(x, P ) ≤ ω1, where ω1 is a positive constant.

(H3) mI(x, P ) is a nonnegative Lipschitz continuous function in x and P with a Lipschitz

constant L2. Furthermore, mI(x, P ) ≤ ω2, where ω2 is a positive constant.

(H4) gI(x, P ) is twice continuously differentiable with respect to x and satisfies |gI(x, P )|+
|gI

x(x, P )|+|gI
xx(x, P )| ≤ ω3, where ω3 is a positive constant. Furthermore, gI(x, P ) > 0

for x ∈ [0, L) and gI(L, P ) = 0, and gI(x, P ) and gI
x(x, P ) are Lipschitz continuous in

P with a Lipschitz constant L3.

(H5) CI(t) is a nonnegative Lipschitz continuous function with a Lipschitz constant L4.

5



Let Q =
N∏

I=1

QI , then Q is a compact subset of B.

Depending on the values of the constants 0 ≤ γI,J ≤ 1, the model (1.1) may have

two different interpretations. If γI,I = 1 and γI,J = 0, I 6= J , the model represents the

dynamics of several populations competing for common resources. On the other hand, if

γI,J > 0, I, J = 1, 2, . . . , N , then the model may describe the dynamics of one population

consisting of N subpopulations, each with its own characteristics. Hence, γI,J represents

the probability that an individual of the Jth subpopulation will reproduce an individual of

the Ith subpopulation. Therefore, two different ways for observing data will be considered.

These lead to the following two different least-squares functionals to be minimized: The

first one is based on the assumption that the model (1.1) describes N different competing

populations. Hence observations ZI,k which correspond to the total number of individuals in

the Ith population at time tk are assumed to be available (this case corresponds to γI,I = 1

and γI,J = 0, I 6= J). We define the least-squares cost functional for this case to be

J (q) =
∑

I

∑

k

∣∣∣∣log

(∫ L

0

uI(x, tk; q)dx + 1

)
− log(ZI,k + 1)

∣∣∣∣
2

, (1.4)

which is minimized over Q. The other case assumes that (1.1) models one species which

has been divided into N not readily distinguishable subpopulations. In this case, we assume

that we can only observe aggregate data Zk, the total number of individuals at time tk (this

case corresponds to γI,J > 0, I, J = 1, 2, . . . , N). We define the least-squares cost functional

J (q) =
∑

k

∣∣∣∣∣log

(∑
I

∫ L

0

uI(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣∣

2

, (1.5)

which is minimized over Q.

We remark that minimizing (1.4) over Q is equivalent to the maximum likelihood esti-

mation of q if

εI,k = log

(∫ L

0

uI(x, tk; q)dx + 1

)
− log(ZI,k + 1)

are i.i.d. normal, and minimizing (1.5) over Q is equivalent to the maximum likelihood

estimation of q if

εk = log

(∑
I

∫ L

0

uI(x, tk; q)dx + 1

)
− log(Zk + 1)

are i.i.d. normal.

The paper is organized as follows. In Section 2, we present a finite difference scheme

for computing the solution of (1.1) and then provide convergence results for the parameter
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estimation technique. In Section 3, we give ample numerical and statistical results. Some

concluding remarks are made in Section 4.

2 Approximation Scheme and Convergence Theory

The following notation will be used throughout the paper: ∆x = L/n and ∆t = T/l denote

the spatial and time mesh size, respectively. The mesh points are given by xj = j∆x, j =

0, 1, 2, . . . , n and tk = k∆t, k = 0, 1, 2, . . . , l. We denote by uI,k
j (q) and P k(q) the finite

difference approximation of uI(xj, tk; q) and P (tk; q), respectively, and we let

gI,k
j = gI(xj, P

k(q)), βI,k
j = βI(xj, P

k(q)),

mI,k
j = mI(xj, P

k(q)), and CI,k = CI(tk).

We define the difference operator

D−
h (uI,k

j ) =
uI,k

j − uI,k
j−1

∆x
, 1 ≤ j ≤ n

and the `1, `∞ and the BV norms of uI,k by

‖uI,k‖1 =
n∑

j=1

|uI,k
j |4x, ‖uI,k‖∞ = max

0≤j≤n
|uI,k

j |, ‖uI,k‖BV =
n∑

j=1

|D−
h (uI,k

j )|4x.

We then discretize the partial differential equation in (1.1) using the following implicit finite

difference approximation

uI,k+1
j (q)− uI,k

j (q)

4t
+

gI,k
j uI,k+1

j (q)− gI,k
j−1u

I,k+1
j−1 (q)

4x
+ mI,k

j uI,k+1
j (q) = 0, 1 ≤ j ≤ n,

gI,k
0 uI,k+1

0 (q) = CI,k +
N∑

J=1

n∑
j=1

γI,JβJ,k
j uJ,k

j (q)4x

P k+1(q) =
N∑

I=1

n∑
j=1

uI,k+1
j (q)∆x

(2.1)

with the initial condition

uI,0
j =

1

4x

∫ j4x

(j−1)4x

uI,0(x)dx, j = 1, 2, . . . , n.

If we define

dI,k
j = 1 +

4t

4x
gI,k

j +4tmI,k
j j = 1, 2, . . . , n, I = 1, 2, . . . , N,
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then (2.1) can be equivalently written as the following system of linear equations for

~uk+1(q) =
[
u1,k+1

0 (q), u1,k+1
1 (q), . . . , u1,k+1

n (q), u2,k+1
0 (q), u2,k+1

1 (q), . . . , u2,k+1
n (q), . . . ,

uN,k+1
0 (q), uN,k+1

1 (q), . . . , uN,k+1
n (q)

]T

∈ RN×(n+1)

Ak~uk+1(q) = ~fk(q), (2.2)

where

~fk(q) =

[
C1,k +

N∑
J=1

n∑
j=1

γ1,JβJ,k
j uJ,k

j (q)4x, u1,k
1 (q), . . . , u1,k

n (q),

C2,k +
N∑

J=1

n∑
j=1

γ2,JβJ,k
j uJ,k

j (q)4x, u2,k
1 (q), . . . , u2,k

n (q), . . . ,

CN,k +
N∑

J=1

n∑
j=1

γN,JβJ,k
j uJ,k

j (q)4x, uN,k
1 (q), . . . , uN,k

n (q)

]T

and Ak is the following block diagonal matrix:

Ak =




A1,k 0 0 · · · 0
0 A2,k 0 · · · 0
0 0 A3,k · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · AN,k




with the lower triangular matrix

AI,k =




gI,k
0 0 0 · · · 0 0

−4t

4x
gI,k
0 dI,k

1 0 · · · 0 0

0 −4t

4x
gI,k
1 dI,k

2 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −4t

4x
gI,k

n−1 dI,k
n




.

Note that using the assumptions on our parameters one can easily show that equation

(2.2) has a unique solution satisfying ~uk+1(q) ≥ 0, k = 0, 1, . . . , l − 1.

The above approximation can be extended to a family of functions {U I
∆x,∆t(x, t; q)} de-

fined by
U I

∆x,∆t(x, t; q) = uI,k
j (q) for (x, t) ∈ [xj−1, xj)× [tk−1, tk),

j = 1, 2, . . . , n, k = 1, 2, . . . , l, I = 1, 2, . . . , N.

(2.3)
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Since our parameter set is infinite dimensional, a finite dimensional approximation of the

parameter space is also necessary for computing minimizers. To this end, we consider the

following finite-dimensional approximations of (1.4) and (1.5), respectively:

J∆x,∆t(q) =
∑

I

∑

k

∣∣∣∣log

(∫ L

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(ZI,k + 1)

∣∣∣∣
2

(2.4)

and

J∆x,∆t(q) =
∑

k

∣∣∣∣∣log

(∑
I

∫ L

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣∣

2

, (2.5)

each of which is minimized over QM , a compact finite-dimensional approximation of the

parameter space Q. In order to establish the convergence results for the parameter estimation

technique, we use a similar approach to that in [3], which is based on the abstract theory in

[18].

Theorem 2.1 Let qi = (q1,i, q2,i, . . . , qN,i) and suppose that for each I, qI,i → qI in QI and

∆xi, ∆ti → 0 as i →∞. Let

U∆xi,∆ti(x, t; qi) = (U1
∆xi,∆ti

(x, t; qi), U2
∆xi,∆ti

(x, t; qi), . . . , UN
∆xi,∆ti

(x, t; qi))

denote the solution of the finite difference scheme, and let

u(x, t; q) = (u1(x, t; q), u2(x, t; q), . . . , uN(x, t; q))

be the unique weak solution of our problem with initial condition

u0(x) = (u1,0(x), u2,0(x), . . . , uN,0(x))

and parameter q, then U I
∆xi,∆ti

(x, t; qi) → uI(x, t; q) in L1(0, L) uniformly in t ∈ [0, T ].

Proof. Define uI,k,i
j = uI,k

j (qi). From the fact that QI is compact and the results of [4], there

exist positive constants c1, c2, c3, c4 such that for each I = 1, 2, . . . , N , we have
N∑

I=1

‖uI,k,i‖1 ≤

c1, ‖uI,k,i‖∞ ≤ c2, ‖uI,k,i‖BV ≤ c3 and
n∑

j=1

∣∣∣∣∣
uI,r,i

j − uI,s,i
j

∆ti

∣∣∣∣∣ ∆xi ≤ c4(r−s), where r > s. Thus,

for each I there exists a BV ([0, L] × [0, T ]) function ûI(x, t) such that U I
∆xi,∆ti

(x, t; qi) →
ûI(x, t) in L1(0, L) uniformly in t. Hence, from the uniqueness of bounded variation weak

solutions stated in [4], we only need to show that û(x, t) = (û1(x, t), û2(x, t), . . . , ûN(x, t))
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is the weak solution corresponding to the parameter q. To this end, we multiply the first

equation of (2.1) by ϕk+1
j = ϕ(xj, tk+1), where ϕ ∈ C1([0, L]× [0, T ]), to obtain

uI,k+1,i
j ϕk+1

j − uI,k,i
j ϕk

j

∆ti
− uI,k,i

j

ϕk+1
j − ϕk

j

∆ti
+

gI,k,i
j uI,k+1,i

j ϕk+1
j − gI,k,i

j−1 uI,k+1,i
j−1 ϕk+1

j−1

∆xi

−gI,k,i
j−1 uI,k+1,i

j−1

ϕk+1
j − ϕk+1

j−1

∆xi

+ mI,k,i
j uI,k+1,i

j ϕk+1
j = 0.

Multiplying the above equality both sides by ∆xi∆ti and summing over j = 1, 2, . . . , n,

k = 0, 1, . . . , l − 1, we find

n∑
j=1

(
uI,l,i

j ϕl
j − uI,0,i

j ϕ0
j

)
∆xi −

l−1∑

k=0

n∑
j=1

uI,k,i
j

ϕk+1
j − ϕk

j

∆ti
∆xi∆ti

+
l−1∑

k=0

gI,k,i
n uI,k+1,i

n ϕk+1
n − gI,k,i

0 uI,k+1,i
0 ϕk+1

0

∆xi

∆xi∆ti

−
l−1∑

k=0

n∑
j=1

gI,k,i
j−1 uI,k+1,i

j−1

ϕk+1
j − ϕk+1

j−1

∆xi

∆xi∆ti +
l−1∑

k=0

n∑
j=1

mI,k,i
j uI,k+1,i

j ϕk+1
j ∆xi∆ti = 0.

Since gI,k,i
n = 0 and qI,i → qI as i →∞ in QI , passing to the limit we have

∫ L

0

ûI(x, t)ϕ(x, t)dx−
∫ L

0

ûI(x, 0)ϕ(x, 0)dx

=

∫ t

0

∫ L

0

(
ûIϕs + gI ûIϕx −mI ûIϕ

)
dx ds

+

∫ t

0

ϕ(0, s)

(
CI(s) +

N∑
J=1

∫ L

0

γI,JβJ(x, P (s))ûJ(x, s)dx

)
ds.

Thus, û(x, t) is the weak solution corresponding to the parameter q.

Since the logarithm function is continuous on [1,∞), as an immediate consequence of

Theorem 2.1, we obtain the following:

Corollary 2.2 Let U∆x,∆t denote the numerical solution of (2.1) with parameter qi → q and

∆xi, ∆ti → 0. Then

J∆xi,∆ti(q
i) → J (q), as i →∞.

In the next theorem, we establish the continuity of the approximate cost functional, so

that the computational problem of finding approximate minimizer is well-posed.

Theorem 2.3 Let ∆x and ∆t be fixed. For each qI ∈ QI , let U I
∆x,∆t(x, t; q) denote the

solution of the finite difference scheme, and qI,i → qI as i →∞ in QI , then U I
∆x,∆t(x, t; qi) →

U I
∆x,∆t(x, t; q) as i →∞ in L1(0, L) uniformly in t ∈ [0, T ].
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Proof. Define {uI,k,i
j } and {uI,k

j } to be the solution of the finite difference scheme with

parameter qi and q, respectively. Let vI,k,i
j = uI,k,i

j − uI,k
j , then vI,k,i

j satisfies the following:

vI,k+1,i
j − vI,k,i

j

∆t
+ D−

h

[
gI,i(xj, P

k,i)uI,k+1,i
j − gI(xj, P

k)uI,k+1
j

]

+mI,i(xj, P
k,i)vI,k+1,i

j +
[
mI,i(xj, P

k,i)−mI(xj, P
k)

]
uI,k+1

j = 0,

(2.6)

for 1 ≤ j ≤ n, and

gI,i(0, P k,i)uI,k+1,i
0 − gI(0, P k)uI,k+1

0

= CI,i(tk)− CI(tk) +
N∑

J=1

n∑
j=1

γI,JβJ,i(xj, P
k,i)vJ,k,i

j ∆x

+
N∑

J=1

n∑
j=1

γI,J
[
βJ,i(xj, P

k,i)− βJ(xj, P
k)

]
uJ,k

j ∆x,

(2.7)

where P k,i denotes P k(qi). Multiplying both sides of (2.6) by sgn(vI,k+1,i
j )∆x and summing

over j = 1, 2, . . . , n, we obtain

‖vI,k+1,i‖1 − ‖vI,k,i‖1

∆t

≤ −
n∑

j=1

D−
h

[
gI,i(xj, P

k,i)uI,k+1,i
j − gI(xj, P

k)uI,k+1
j

]
sgn(vI,k+1,i

j )∆x

−
n∑

j=1

mI,i(xj, P
k,i)

∣∣∣vI,k+1,i
j

∣∣∣ ∆x

−
n∑

j=1

[
mI,i(xj, P

k,i)−mI(xj, P
k)

]
uI,k+1

j sgn(vI,k+1,i
j )∆x.

(2.8)

Using the fact for any aj with aj ≥ 0, j = 0, 1, 2, . . . , n, we have

n∑
j=1

D−
h (ajbj)sgn(bj)∆x ≥ an|bn| − a0|b0|,

11



we obtain

−
n∑

j=1

D−
h

[
gI,i(xj, P

k,i)uI,k+1,i
j − gI(xj, P

k)uI,k+1
j

]
sgn(vI,k+1,i

j )∆x

= −
n∑

j=1

D−
h

(
gI,i(xj, P

k,i)vI,k+1,i
j

)
sgn(vI,k+1,i

j )∆x

−
n∑

j=1

D−
h

[(
(gI,i(xj, P

k,i)− gI(xj, P
k)

)
uI,k+1

j

]
sgn(vI,k+1,i

j )∆x

≤ gI,i(0, P k,i)|vI,k+1,i
0 |+ sup

1≤j≤n

∣∣gI,i(xj, P
k,i)− gI(xj, P

k)
∣∣ ‖uI,k+1‖BV

+ sup
1≤j≤n

∣∣D−
h

(
gI,i(xj, P

k,i)− gI(xj, P
k)

)∣∣ (‖uI,k+1‖∞ + (‖uI,k+1‖1

)
.

(2.9)

By (2.7), we have

gI,i(0, P k,i)|vI,k+1,i
0 |

≤
∣∣gI,i(0, P k,i)− gI(0, P k)

∣∣uI,k+1
0 +

∣∣CI,i(tk)− CI(tk)
∣∣

+ω1

N∑
J=1

‖vJ,k,i‖1 + max
1≤J≤N

sup
1≤j≤n

∣∣βJ,i(xj, P
k,i)− βJ(xj, P

k)
∣∣

N∑
J=1

‖uJ,k‖1.

(2.10)

Summing (2.8) over I = 1, 2, . . . , N , and using (2.9) and (2.10), we obtain

N∑
I=1

‖vI,k+1,i‖1 −
N∑

I=1

‖vI,k,i‖1

∆t

≤ max
1≤I≤N

sup
1≤j≤n

∣∣D−
h

(
gI,i(xj, P

k,i)− gI(xj, P
k)

)∣∣
(

N max
1≤I≤N

‖uI,k+1‖∞ +
N∑

I=1

‖uI,k+1‖1

)

+N max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj, P
k,i)− gI(xj, P

k)
∣∣ max

1≤I≤N
‖uI,k+1‖BV

+N max
1≤I≤N

∣∣gI,i(0, P k,i)− gI(0, P k)
∣∣ max

1≤I≤N
‖uI,k+1‖∞ + N max

1≤I≤N

∣∣CI,i(tk)− CI(tk)
∣∣

+N max
1≤J≤N

sup
1≤j≤n

∣∣βJ,i(xj, P
k,i)− βJ(xj, P

k)
∣∣

N∑
J=1

‖uJ,k‖1 + Nω1

N∑
I=1

‖vI,k,i‖1

+ max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj, P
k,i)−mI(xj, P

k)
∣∣

N∑
I=1

‖uI,k+1‖1.

Noticing that

∣∣gI,i(xj, P
k,i)− gI(xj, P

k)
∣∣

≤
∣∣gI,i(xj, P

k,i)− gI,i(xj, P
k)

∣∣ +
∣∣gI,i(xj, P

k)− gI(xj, P
k)

∣∣ ,
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we have from (H4) the following:

max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj, P
k,i)− gI(xj, P

k)
∣∣

≤ L3

N∑
I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj, P
k)− gI(xj, P

k)
∣∣ .

Similarly, we can show that

max
1≤I≤N

sup
1≤j≤n

∣∣βI,i(xj, P
k,i)− βI(xj, P

k)
∣∣

≤ L1

N∑
I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∣∣βI,i(xj, P
k)− βI(xj, P

k)
∣∣

and

max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj, P
k,i)−mI(xj, P

k)
∣∣

≤ L2

N∑
I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj, P
k)−mI(xj, P

k)
∣∣ .

Furthermore, straightforward computations yield
∣∣D−

h

[
gI,i(xj, P

k,i)− gI(xj, P
k)

]∣∣

=

∣∣∣∣
1

∆x

(∫ 1

0

d

dr
gI,i(rxj + (1− r)xj−1, P

k,i)dr −
∫ 1

0

d

dr
gI(rxj + (1− r)xj−1, P

k)dr

)∣∣∣∣

=

∣∣∣∣
∫ 1

0

gI,i
x (rxj + (1− r)xj−1, P

k,i)dr −
∫ 1

0

gI
x(rxj + (1− r)xj−1, P

k)dr

∣∣∣∣

≤
∫ 1

0

∣∣gI,i
x (rxj + (1− r)xj−1, P

k,i)− gI,i
x (rxj + (1− r)xj−1, P

k)
∣∣ dr

+

∫ 1

0

∣∣gI,i
x (rxj + (1− r)xj−1, P

k)− gI
x(rxj + (1− r)xj−1, P

k)
∣∣ dr.

Hence, from (H4) we obtain

max
1≤I≤N

sup
1≤j≤n

∣∣D−
h

[
gI,i(xj, P

k,i)− gI(xj, P
k)

]∣∣

≤ L3

N∑
I=1

‖vI,k,i‖1 + max
1≤I≤N

sup
1≤j≤n

∫ 1

0

∣∣gI,i
x (x̄j, P

k)− gI
x(x̄j, P

k)
∣∣ dr,

where x̄j = rxj + (1− r)xj−1. Set

δk = L3

(
N max

1≤I≤N
‖uI,k+1‖∞ +

N∑
I=1

‖uI,k+1‖1

)
+ NL1

N∑
I=1

‖uI,k‖1 + Nω1

+NL3

(
max

1≤I≤N
‖uI,k+1‖BV + max

1≤I≤N
‖uI,k+1‖∞

)
+ L2

N∑
I=1

‖uI,k+1‖1

13



and

ρk,i =

(
N max

1≤I≤N
‖uI,k+1‖∞ +

N∑
I=1

‖uI,k+1‖1

)
max

1≤I≤N
sup

1≤j≤n

∫ 1

0

∣∣gI,i
x (x̄j, P

k)− gI
x(x̄j, P

k)
∣∣ dr

+N max
1≤I≤N

‖uI,k+1‖BV max
1≤I≤N

sup
1≤j≤n

∣∣gI,i(xj, P
k)− gI(xj, P

k)
∣∣

+N max
1≤I≤N

‖uI,k+1‖∞ max
1≤I≤N

∣∣gI,i(0, P k)− gI(0, P k)
∣∣ + N max

1≤I≤N

∣∣CI,i(tk)− CI(tk)
∣∣

+N

N∑
I=1

‖uI,k‖1 max
1≤I≤N

sup
1≤j≤n

∣∣βI,i(xj, P
k)− βI(xj, P

k)
∣∣

+
N∑

I=1

‖uI,k+1‖1 max
1≤I≤N

sup
1≤j≤n

∣∣mI,i(xj, P
k)−mI(xj, P

k)
∣∣ .

Then, we have
N∑

I=1

‖vI,k+1,i‖1 −
N∑

I=1

‖vI,k,i‖1

∆t
≤ δk

N∑
I=1

‖vI,k,i‖1 + ρk,i.

Since for each k, ρk,i → 0 as i →∞, the desired result easily follows from this inequality.

Theorem 2.4 Suppose that QM is a sequence of compact subsets of Q. Moreover, assume

that for each q ∈ Q, there exists a sequence of qM ∈ QM such that qM → q as M →∞. Then

the functional J∆x,∆t has a minimizer over QM . Furthermore, if qi
M denotes a minimizer of

J∆xi,∆ti over QM and ∆xi, ∆ti → 0, then any subsequence of qi
M has a further subsequence

which converges to a minimizer of J .

Proof. The proof of this theorem is a direct application of the abstract theory in [18], based

on the convergence of J∆xi,∆ti(q
i) → J (q).

3 Numerical Results

In this section, we present ample numerical simulations and statistical results. In all of the

simulations below we assume L = 1, T = 1, and CI(t) = 0 for I = 1, 2, . . . , N .

In subsections 3.1 and 3.2, we assume N = 1 and that all the parameters are known

except for β. To estimate β we use data which are generated computationally as follows:

Let

u0(x) = 3 exp(−2(x− 0.5)2), g(x, P ) = 5(1− x) exp(−3P ),

m(x, P ) = exp(4(x− 0.4)2) exp(0.2P ), β(x, P ) = 6x(1− x) exp(−3P ),

14



and we solve (2.1) and (2.3) for U∆x,∆t(x, t). We set the data Zk = (1+εk)

∫ 1

0

U∆x,∆t(x, tk)dx,

where εk is a random sample from a normal random number generator with mean zero and

standard deviation σ = 0.02.

3.1 1−D linear estimation problem for finite dimensional param-
eter space when N = 1

In our first example we assume that β is of a separable form given by β(x, P ) = b(x) exp(−3P ),

where b(x) = µx(1 − xν) with µ and ν two unknown constants to be identified. Hence, the

solution to our least-squares problems involves identifying the two constants µ and ν from a

compact subset of R2
+ so as to minimize the least-squares cost functional

J∆x,∆t(q) =
m∑

k=1

∣∣∣∣log

(∫ 1

0

U∆x,∆t(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣
2

.

In order to test the performance of the parameter-estimation technique when no infinite

dimensional effects are present, in Figure 1 we choose ∆x = ∆t = 0.005 for both generating

the data and the numerical solution (2.3) in the least-squares problem. This avoids the

infinite-dimensional effect of the partial differential equation given in (1.1). In fact, if the

noise is removed from the data, and the parameters µ and ν are known, then numerically

solving our model produces the exact data.

In Figure 2 we use ∆x = ∆t = 0.005 to generate the data while we use ∆x = ∆t = 0.01

for the numerical solution (2.3) in the least-squares problem. Thus, in this case the data are

not exactly attained by our model even if the noise is removed (an error is present due to the

finite-dimensional approximation of our infinite-dimensional model). The results of Figure

2 are obtained by using the same values for the rest of the parameters as those of Figure 1.

A similar format for presenting the results of 1000 inverse problem calculations was used

in Figure 1 and 2. The left part of each of the figures represents the S (for our case S = 1000)

numerical results for the estimated parameter bs(x) (s = 1, 2, . . . , S) versus the exact b(x),

where these 1000 distinct numerical results graphed were obtained by solving 1000 inverse

problems, each of which corresponds to a given noise sample {εk}. The right part represents

the figure of the corresponding 95% confidence interval (dashed line) versus the exact b(x)

(solid line), where the 95% confidence interval is obtained by choosing the band between

the upper 2.5% and lower 2.5% of these 1000 numerical results. Table 1 provides statistical

results for the corresponding graphs, where AB(x) =
1

S

S∑
s=1

(bs(x)−b(x)) denotes the average

bias for all approximations at x, RAB(x) = 100
AB(x)

b(x)
denotes the relative average bias for
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all approximations at x and

SE(x) =

[
1

S − 1

S∑
s=1

(bs(x)− b(x)− AB(x))2

] 1
2

=

[
1

S − 1

S∑
s=1

(bs(x)− 1

S

S∑
s=1

bs(x))2

] 1
2

denotes the sampling standard error at the point x. Note that this is simply the usual

asymptotic formula for the pointwise standard error (e.g., see p. 28, 37 of [21] and p. 308 of

[45]).

Although the estimates in both figures are good, the results in Figures 1-2 and Table

1 suggest that infinite-dimensional effects can lead to a slightly under biased estimator.

We suspect that this bias depends on the choice of the numerical scheme used for solving

the infinite-dimensional partial differential equation model. Here we are using an upwind

scheme for approximating the model and a right-hand sum for approximating all the integrals

involved. This biased estimator may be improved if, for example, a centered finite difference

approximation is used together with a trapezoidal rule for integration.
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Figure 1: ∆x = ∆t = 0.005 to generate the data and solve the least-squares. For the left
part of the figure, each of the grey lines (....) denotes a distinct result for a given sample
{εk}.

The above statistical results (essentially on how measurement error affects estimates) are

based on a large number of numerical simulations (somewhat in the spirit of Bayesian based

MCMC calculations used to estimate means and variances in a probability distribution from

“experimental” data). Any estimate of model parameters from data can also be accompanied

by an estimate of uncertainty using standard regression formulations from statistics [21].

Thus, in the remaining part of this subsection, we present a statistical based method to

actually compute the variance in the estimated model parameters q = (µ, ν).

16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

b

approximate
exact

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

b
Figure 2: ∆x = ∆t = 0.005 to generate the data and ∆x = ∆t = 0.01 to solve the least-
squares. For the left part of the figure, each of the grey lines (....) denotes a distinct result
for a given sample {εk}.

x AB(x) RAB(x) SE(x)
0.1 -0.0037 -0.6870 0.0749
0.2 -0.0092 -0.9580 0.0993
0.3 -0.0107 -0.8463 0.0975
0.4 -0.0079 -0.5497 0.0860
0.5 -0.0021 -0.1427 0.0798
0.6 0.0049 0.3378 0.0852
0.7 0.0110 0.8707 0.0926
0.8 0.0138 1.4425 0.0882
0.9 0.0110 2.0444 0.0605

x AB(x) RAB(x) SE(x)
0.1 -0.0390 -7.2314 0.0747
0.2 -0.0651 -6.7812 0.1053
0.3 -0.0768 -6.0949 0.1130
0.4 -0.0763 -5.2995 0.1124
0.5 -0.0666 -4.4422 0.1138
0.6 -0.0511 -3.5460 0.1188
0.7 -0.0331 -2.6236 0.1202
0.8 -0.0162 -1.6830 0.1075
0.9 -0.0039 -0.7294 0.0706

Table 1: Left and right tables are statistical results for Figure 1 and Figure 2, respectively.
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To perform this analysis, we need to compute the sensitivity matrix

X(q) =




Pµ(t1; q)

1 + P (t1; q)

Pν(t1; q)

1 + P (t1; q)
Pµ(t2; q)

1 + P (t2; q)

Pν(t2; q)

1 + P (t2; q)
· · · · · ·

Pµ(tm; q)

1 + P (tm; q)

Pν(tm; q)

1 + P (tm; q)




. (3.1)

Note that we cannot compute P (t; q), Pµ(t; q) and Pν(t; q) directly from our model. There-

fore, we use the difference scheme (2.1) to obtain the following approximation of P (t; q):

P̂ (t; q) =

∫ 1

0

U∆x,∆t(x, t; q)dx.

Then we use a forward difference approximation for the derivative Pµ(t; q) and Pν(t; q) given

by

P̂µ(t; µ, ν) =
1

∆µ

(
P̂ (t; µ + ∆µ, ν)− P̂ (t; µ, ν)

)

and

P̂ν(t; q) =
1

∆ν

(
P̂ (t; µ, ν + ∆ν)− P̂ (t; µ, ν)

)
.

Substituting P̂ (ti; q), P̂µ(ti; q) and P̂ν(ti, q) for P (ti; q), Pµ(ti; q) and Pν(ti; q) in (3.1), re-

spectively, we obtain the following approximation of X(q):

X̂(q) =




P̂µ(t1; q)

1 + P̂ (t1; q)

P̂ν(t1; q)

1 + P̂ (t1; q)
P̂µ(t2; q)

1 + P̂ (t2; q)

P̂ν(t2; q)

1 + P̂ (t2; q)
· · · · · ·

P̂µ(tm; q)

1 + P̂ (tm; q)

P̂ν(tm; q)

1 + P̂ (tm; q)




.

Under standard assumptions of classical nonlinear regression theory, we know that if

ε̂i ∼ N (0, σ2), where ε̂i is the difference between observation and model at time ti, then

the least-squares estimate q∗ is expected to be asymptotically normally distributed. In

particular, for large samples, we may assume

q∗ ∼ N [q0, σ
2{XT (q0)X(q0)}−1], (3.2)

where q0 is the true vector of parameters and σ2{XT (q0)X(q0)}−1 is the true covariance

matrix (see [21], Chapter 2).
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Since q0 and σ2 are not available, we follow a standard statistical practice [5]: substitute

the computed estimate q∗ for q0 and approximate σ2 by

σ̂2 =
1

m− 2

m∑
j=1

(
log

(
P̂ (tj; q

∗) + 1
)
− log(Zj + 1)

)2

(3.3)

in (3.2) to obtain the standard deviation for our estimates. In particular, if

V = σ̂2{X̂T (q∗)X̂(q∗)}−1 =

[
V11 V12

V21 V22

]
,

then we take
√

V11 and
√

V22 to be the standard deviation for parameters µ and ν, respec-

tively. The following two tables are the standard deviation of µ and ν for the results of the

first eight numerical simulations of Figure 1 and Figure 2, respectively.

µ 1.1613 1.0494 1.0451 1.1109 1.0864 1.4684 1.1605 1.0512
ν 1.2124 0.3073 0.2999 0.2741 0.2701 1.5555 0.2482 0.2390

Table 2: Standard deviation for the results of the first 8 numerical simulations of Figure 1.

µ 1.7066 1.5636 1.6192 1.7974 1.6389 2.8009 1.8619 1.3893
ν 0.7716 0.3238 0.4838 0.1812 0.3426 2.8685 0.3828 0.4136

Table 3: Standard deviation for the results of the first 8 numerical simulations of Figure 2.

Table 4 provides the average standard deviation of µ and ν for the results of all the 1000

numerical simulations of Figure 1 and Figure 2, respectively. We note that in most practical

situations using experimental data, one does not expect to have 1000 experiments performed.

But the above procedures will produce estimates of variances even in the case when one has

only one data set!

Figure 1 Figure 2
µ 1.1921 1.9197
ν 0.4566 0.8572

Table 4: Average of standard deviation for all the results of the numerical simulations of
Figures 1-2.

3.2 1 − D linear estimation problem for infinite dimensional pa-
rameter space when N = 1

In this example, we assume that β is of a separable form given by β(x, P ) = b(x) exp(−3P ),

where b(x) is an unknown parameter that we want to identify.
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Let

D = {f ∈ C[0, 1] : |f(x)− f(y)| ≤ K|x− y|, f(0) = f(1) = 0}.
Choose the parameter space Q = D. Clearly, by Arzela-Ascoli Theorem [33] Q is compact

in C[0, 1]. We approximate the infinite dimensional parameter space as follows: For M a

positive integer and b ∈ Q, we set

(IMb)(x) =
M−1∑
i=1

b

(
i

M

)
φi

M(x; 0, 1),

where φi
M(x; 0, 1) are the linear spline functions on a uniform mesh of the interval [0, 1].

These are defined by

φi
M(x; 0, 1) =





1− i +
x

h
, (i− 1)h ≤ x ≤ ih,

1 + i− x

h
, ih ≤ x ≤ (i + 1)h, i = 1, 2, . . . , M − 1,

0, |x− ih| ≥ h,

where h =
1

M
. It can be readily argued that lim

M→∞
IMb = b in C[0, 1], uniformly in b [44].

Hence, if bM ∈ QM = IM(Q) is given by

bM(x) =
M−1∑
i=1

λi
Mφi

M(x; 0, 1),

then the solution of our finite dimensional identification problem involves identifying the

M − 1 coefficients {λi
M}M−1

i=1 from a compact subset of RM−1
+ so as to minimize the least-

squares cost functional (2.4).

In order to indirectly implement the compactness constraints of Q, we use a regularized

least squares cost functional of the form

J∆x,∆t(q) =
m∑

k=1

∣∣∣∣log

(∫ 1

0

U∆x,∆t(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣
2

+ α

∫ 1

0

∣∣∣∣
d

dx
bM(x)

∣∣∣∣
2

dx,

where α > 0 is the regularization parameter.

The left part of each of the following figures again represents the S (=1000) numerical

results of the estimated parameter versus the exact parameter b(x). The right part repre-

sents the figure of the corresponding 95% confidence interval (dashed line) versus the exact

b(x) (solid line). The tables provide statistical results for the corresponding graphs.
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Effect of infinite-dimensional model on parameter estimate.

In Figure 3 we use ∆x = 0.005 and ∆t = 0.005 to generate the data and the numerical

solution (2.3) for the least-squares problem. This removes the infinite-dimensional effect of

the partial differential equation given by (1.1). However, in Figure 4 we use ∆x = ∆t = 0.005

to generate the data and ∆x = ∆t = 0.01 to compute (2.3). Thus, in this case the data

are not exactly attained by our model even if the noise is removed. We observe that while

the estimates in both figures are good, the results in Figures 3-4 and Table 5 suggest that

infinite-dimensional effects can lead to a slightly under biased estimator.
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Figure 3: M = 10, α = 3e − 5. Each of the grey lines (....) of the left part of the figure
denotes a distinct result for a given sample {εk}.

x AB(x) RAB(x) SE(x)
0.1 -0.0778 -14.4108 0.0723
0.2 -0.0816 -8.5015 0.1070
0.3 -0.0400 -3.1727 0.1012
0.4 0.0110 0.7636 0.0834
0.5 0.0386 2.5745 0.0818
0.6 0.0283 1.9621 0.0868
0.7 -0.0124 -0.9880 0.0779
0.8 -0.0559 -5.8206 0.0556
0.9 -0.0623 -11.5426 0.0280

x AB(x) RAB(x) SE(x)
0.1 -0.1236 -22.8940 0.0667
0.2 -0.1571 -16.3628 0.1040
0.3 -0.1284 -10.1885 0.1141
0.4 -0.0785 -5.4485 0.1130
0.5 -0.0440 -2.9329 0.1110
0.6 -0.0446 -3.0966 0.1049
0.7 -0.0754 -5.9875 0.0885
0.8 -0.1059 -11.0334 0.0624
0.9 -0.0939 -17.3949 0.0323

Table 5: Left and right tables are statistical results for Figure 3 and Figure 4, respectively.

Effect of regularization parameter α on parameter estimate.
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Figure 4: M = 10, α = 3e − 5. Each of the grey lines (....) of the left part of the figure
denotes a distinct result for a given sample {εk}.

In Figures 5 and 6 we change the parameter α while keeping the rest fixed. Clearly, low

regularization parameter leads to relatively bad estimates although the estimator in this case

seems to be the least biased (see Figure 5 and left part of Table 6). Increasing the value

of α leads to better parameter estimates, but the estimator becomes more under biased

(see Figure 6 and right part of Table 6). If this value is increased more, the estimator is

more biased. Also the parameter estimate becomes worse than before. This suggests, not

surprisingly, that there is an optimal choice for the parameter α which produces the best

results for the parameter estimates.
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Figure 5: M = 10, α = 1e − 5. Each of the grey lines (....) of the left part of the figure
denotes a distinct result for a given sample {εk}.
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x AB(x) RAB(x) SE(x)
0.1 -0.1277 -23.6389 0.1206
0.2 -0.1648 -17.1644 0.1791
0.3 -0.1284 -10.1938 0.1618
0.4 -0.0599 -4.1591 0.1221
0.5 -0.0072 -0.4806 0.1169
0.6 0.0026 0.1788 0.1274
0.7 -0.0253 -2.0101 0.1126
0.8 -0.0631 -6.5678 0.0780
0.9 -0.0642 -11.8944 0.0427

x AB(x) RAB(x) SE(x)
0.1 -0.1241 -22.9816 0.0506
0.2 -0.1621 -16.8881 0.0842
0.3 -0.1432 -11.3627 0.1011
0.4 -0.1050 -7.2906 0.1078
0.5 -0.0791 -5.2736 0.1087
0.6 -0.0837 -5.8139 0.1009
0.7 -0.1077 -8.5443 0.0847
0.8 -0.1288 -13.4165 0.0602
0.9 -0.1042 -19.3027 0.0313

Table 6: Left and right tables are statistical results for Figure 5 and Figure 6, respectively.
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Figure 6: M = 10, α = 5e − 5. Each of the grey lines (....) of the left part of the figure
denotes a distinct result for a given sample {εk}.
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3.3 1 − D linear estimation problem for infinite dimensional pa-
rameter space when N = 2

In this section, we assume N = 2 and that all the parameters are known except for β1

and β2. To estimate β1 and β2, we assume that they are of a separable form given by

β1(x, P ) = b1(x) exp(−P ) and β2(x, P ) = b2(x) exp(−P ), respectively, where b1(x) and

b2(x) are unknown parameters to be identified. To estimate b1(x) and b2(x), we use data

which are generated computationally as follows: Let γI,J =

{
1, I = J
0, I 6= J

for Figure 7 and

γI,J = 0.5, I, J = 1, 2 for Figure 8, uI,0(x) = 3 exp(−2(x − 0.1)2), and for the parameters

gI ,mI and βI we use the following choice of functions:

g1 = 2(1− x) exp(−0.8P ), g2 = (1− x)(1 + 2P ) exp(−P ),

m1 = exp(2(x− 0.4)2) exp(0.2P ), m2 = exp(2(x− 0.4)2) exp(0.2P ),

β1 = 6(1− x)x exp(−P ), β2 = 6(1− x)x exp(−5(x− 0.5)2) exp(−P ),

and solve (1.1) for U I
∆x,∆t(x, t), I = 1, 2. We set the data ZI,k = (1+ εI,k)

∫ 1

0

U I
∆x,∆t(x, tk)dx,

I = 1, 2 for Figure 7 and Zk = (1 + εk)
2∑

I=1

∫ 1

0

U I
∆x,∆t(x, tk)dx for Figure 8, where εI,k and εk

both are the random sample from a normal random number generator with mean zero and

standard deviation σ = 0.02.

We choose the parameter space Q = D × D. Clearly, Q is compact in C[0, 1] × C[0, 1].

We approximate the infinite dimensional parameter space as follows: For M1, M2 positive

integers and any (b1, b2) ∈ Q, we set

(IMJ
bJ)(x) =

MJ−1∑
i=1

bJ

(
i

MJ

)
φi

MJ
(x; 0, 1), J = 1, 2.

Clearly, lim
MJ→∞

IMJ
bJ = bJ in C[0, 1], uniformly in bJ , J = 1, 2. Hence, if bJ

MJ
∈ QMJ

=

IMJ
(Q) is given by

bJ
MJ

(x) =

MJ−1∑
i=1

λJ,i
MJ

φi
MJ

(x; 0, 1), J = 1, 2,

then the solution of our finite dimensional identification problem involves identifying the

M1 +M2−2 coefficients {λJ,i
MJ
}MJ−1,2

i=1,J=1 from a compact subset of RM1+M2−2
+ so as to minimize

the least-squares cost functional (2.4) or (2.5).

In order to indirectly implement the compactness constraints of Q, we still use the regu-
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larized least-squares cost functional. For Figure 7 we use the form

J∆x,∆t(q) =
2∑

I=1

m∑

k=1

∣∣∣∣log

(∫ 1

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(ZI,k + 1)

∣∣∣∣
2

+
2∑

I=1

αI

∫ 1

0

∣∣∣∣
d

dx
bI
MI

(x)

∣∣∣∣
2

dx,

and for Figure 8 we use the form

J∆x,∆t(q) =
m∑

k=1

∣∣∣∣∣log

(
2∑

I=1

∫ 1

0

U I
∆x,∆t(x, tk; q)dx + 1

)
− log(Zk + 1)

∣∣∣∣∣

2

+
2∑

I=1

αI

∫ 1

0

∣∣∣∣
d

dx
bI
MI

(x)

∣∣∣∣
2

dx,

where αI > 0, I = 1, 2 are the regularization parameters and m = 100 for Figures 7 and 8.

In the rest of our simulations we use ∆x = ∆t = 0.005 to generate the data and ∆x =

∆t = 0.01 to solve the least-squares. Thus, in these cases the data are not exactly attained

by our model even if the noise is removed.

The upper-left part and the lower-left part of the following two figures represent the S

(=1000) numerical results of the estimated parameters b1
M1

(x) and b2
M2

(x) versus the exact

parameters b1(x) and b2(x), respectively. The upper-right part and the lower right part

represent the figures of the corresponding 95% confidence interval (dashed line) versus the

exact b1(x) and b2(x) (solid line), respectively. The tables provide statistical results for the

corresponding graphs.

Note that the results in Figure 7 and Table 7 are slightly better than those in Figure 8

and Table 8. This is expected since in Figure 7 we are sampling data for each of the two

populations, which provides more information than sampling the sum of the two populations

only, as is the case in Figure 8. Also note that in both of these figures we let M = M1 =

M2 = 10.
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Figure 7: M = 10, α1 = 5e− 5, α2 = 5e− 5. Each of the grey lines (....) of the left part of
the figure denotes a distinct result for a given sample {εI,k}.

x AB(x) RAB(x) SE(x)
0.1 -0.0187 -3.4717 0.0880
0.2 -0.0004 -0.0447 0.1276
0.3 0.0334 2.6514 0.1053
0.4 0.0562 3.9007 0.0493
0.5 0.0449 2.9941 0.0548
0.6 -0.0040 -0.2805 0.0860
0.7 -0.0683 -5.4239 0.0836
0.8 -0.1101 -11.4644 0.0576
0.9 -0.0929 -17.2091 0.0272

x AB(x) RAB(x) SE(x)
0.1 0.1684 69.4034 0.0959
0.2 0.1628 26.5887 0.1528
0.3 0.0487 4.7244 0.1483
0.4 -0.0728 -5.3114 0.0946
0.5 -0.1134 -7.5604 0.0464
0.6 -0.0437 -3.1871 0.0860
0.7 0.0931 9.0282 0.1053
0.8 0.2039 33.3052 0.0819
0.9 0.1954 80.5164 0.0402

Table 7: Left and right tables are statistical results of b1(x) and b2(x) for Figure 7, respec-
tively.
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Figure 8: M = 10, α1 = 5e− 5, α2 = 5e− 5. Each of the grey lines (....) of the left part of
the figure denotes a distinct result for a given sample {εk}.

x AB(x) RAB(x) SE(x)
0.1 -0.0687 -12.7279 0.0765
0.2 -0.0790 -8.2334 0.1096
0.3 -0.0572 -4.5419 0.0891
0.4 -0.0402 -2.7920 0.0435
0.5 -0.0537 -3.5800 0.0588
0.6 -0.0980 -6.8075 0.0871
0.7 -0.1490 -11.8273 0.0846
0.8 -0.1694 -17.6443 0.0596
0.9 -0.1255 -23.2483 0.0296

x AB(x) RAB(x) SE(x)
0.1 0.1926 79.3867 0.1066
0.2 0.2106 34.4018 0.1757
0.3 0.1187 11.5041 0.1784
0.4 0.0178 1.2960 0.1208
0.5 -0.0069 -0.4598 0.0549
0.6 0.0665 4.8565 0.0915
0.7 0.1889 18.3112 0.1157
0.8 0.2704 44.1765 0.0915
0.9 0.2239 92.2680 0.0459

Table 8: Left and right tables are statistical results of b1(x) and b2(x) for Figure 8, respec-
tively.
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4 Concluding Remarks

In this paper we have developed a numerical technique for identifying unknown parameters

in a general size-structured population model. A main focus of the paper is on a statistical

study of the parameter estimation technique. This was carried out by calculating pointwise

standard errors on the estimated parameters (functions) via use of thousands of numerical

experiments.

Several conclusions can be drawn from our studies. 1) The method discussed above seems

to perform well and produce good confidence intervals for the parameters. 2) When the

infinite dimensional effects of the model and the parameter space are removed, the resulting

numerical and statistical values suggest that the least-squares technique produces very good

unbiased parameter estimates. 3) The type of numerical scheme used for approximating

the infinite-dimensional model as well as the parameter space may influence the bias in the

parameter estimation technique. 4) The commonly used regularization term is crucial for

enforcing compactness and obtaining better estimates. However, it may also introduce more

bias in the estimator.

We note in closing that the system (1.1) investigated in this paper is a special case

of the measure dependent aggregate dynamics problems formulated in [6] wherein individ-

ual (uncoupled) dynamics are not available. Inverse problems for such systems have been

investigated in a number of applications including cellular level HIV modelling [7], hys-

teresis in viscoelastic materials [8, 9], shear waves in biotissue [10], and electromagnetic

interrogation in complex materials [11]. In a more general formulation (currently under

investigation by the authors), one has a probability distribution F of individual parame-

ters q(x, P ) = q = (g, m, β, C) on an admissible set Q. The system (1.1) is replaced by a

continuum of systems for u(x, t; q(x, P )) with the total population P (t; F ) given by

P (t; F ) =

∫

Q

[∫ L

0

u(x, t; q)dx

]
dF (q) =

∫

Q

[∫ L

0

u(x, t; q)dx

]
f(q)dq,

the latter equality holding if F has a density f . The aggregate dynamics for u depend

explicitly on F through the dependence of the individual rate parameters (g,m, β, C) on the

total population P .

If F is a discrete measure with N atoms at qJ of mass fJ , then we have

P (t; F ) =
N∑

J=1

fJ

∫ L

0

u(x, t; qJ)dx.
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Moreover, if F is uniformly and discretely distributed (fJ =
1

N
), this becomes

P (t; F ) =
1

N

N∑
J=1

∫ L

0

u(x, t; qJ)dx,

which is simply a scaled (by
1

N
) version of (1.2). Of course, even in this simple case, the

system does not decouple. (i.e., individual dynamics are not available). This will be the case

anytime the individual parameters for subpopulations depend on the total population. It is

also clear that inverse problems with such measure dependent dynamics are a generalized

version of the estimation problems discussed in the statistical literature in the context of

hierarchial or mixed effects modelling [20, 21, 22].
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eds.), Birkhäuser, Basal, 1998, 353-371.

[18] H.T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems,

Birkhauser, Boston, 1989.

[19] K. Cho and Y. Kwon, Parameter estimation in nonlinear age-dependent population

dynamics, IMA J. Appl. Math. 62 (1999), 227-244.

[20] M. Davidian and A.R.Gallant, The nonlinear mixed effects model with a smooth random

effects density, Biometrika 80 (1993), 475-488.

[21] M. Davidian and D.M. Giltinan, Nonlinear Models for Repeated Measurement Data,

Chapman & Hall/CRC, New York, 1995.

[22] M. Davidian and D.M. Giltinan, Nonlinear models for repeated measurement data: An

overview and update, J. Agricul., Biol. and Environ. Statistics 8 (2003), 387-419.

[23] G. Di Cola and F. Nicoli, Parameter estimation in age-structured population dynamics,

Riv. Mat. Univ. Parma 9 (1983), 213-222.

[24] O. Diekmann, M. Gyllenberg, J.A. Metz and H. Thieme, The ”cumulative” formulation

of (physiologically) structured population models. Evolution equations, control theory,

and biomathematics (Han sur Lesse, 1991), Lecture Notes in Pure and Appl. Math.,

155, Dekker, New York, 1994, 145-154.

[25] G. Dimitriu, Parameter estimation in size/age structured population models using the

moving finite element method, Numerical methods and applications, Lecture Notes in

Comput. Sci., 254, Springer, Berlin, 2003, 420-429.

[26] H. W. Engl, W. Rundell and O. Scherzer, A regularization scheme for an inverse problem

in age-structured populations, J. Math. Anal. Appl. 182 (1994), 658-679.

31



[27] B.G. Fitzpatrick, Modeling and estimation problems for structured heterogeneous pop-

ulations, J. Math. Anal. Appl. 172 (1993), 73-91.

[28] B.G. Fitzpatrick, Statistical tests of fit in estimation problems for structured population

modeling, Quart. Appl. Math. 53 (1995), 105-128.

[29] M. Grasselli, An inverse problem in population dynamics, Numer. Funct. Anal. Optim.

18 (1997), 311-323.
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